注册 登录  
 加关注
查看详情
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

lingjie.dai的博客

 
 
 

日志

 
 

小学数学新课程标准解读读书笔记  

2012-06-04 20:39:39|  分类: 转载 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

今天我又重温了一下《小学数学新课程标准》,它的基本理念有以下几点:
1.义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。
2.数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想象力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
3.学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动.内容的呈现应采用不同的表达方式,以满足多样化的学习需求.有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式.由于学生所处的文化环境、家庭背景和自身思维方式的不同、学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
4.数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
5.评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。
6.现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响、数学课程的设计与实施应重视运用现代信息技术、特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。


1、数学教育是中小学的一门基础的学科教育,如同其他的学科一样,其教育意义并不局限于本学科的只是掌握,更反映在它有理地促进人的素质的发展,是人的文化修养的最深刻、最有效的部分之一。
2、经济发达国家的数学教育改革方向:学校数学的焦点从双重任务---对大多数人教最少的数学,而把高等数学教给少数人-----过渡到单一中心,把数学的最重要的公共核心教给所有的学生。从基于传递只是的权威性的模式过渡到以启发学习为特征的,以学生为中心的实践活动。从强调为后续内容做准备过渡到着重强调学生当前及未来所需要的东西。从原来强调一张纸、一支笔式计算到全面使用计算器和计算机。
3、中小学数学中蕴藏着促进人未来发展的因素,这就是人的数学素质,其核心是人的思维品质。
4、数学教师教学经历3个层次:展现解法,展现思路,展现思路的寻找过程。
5、数学教育的意义在于用学科自身的品质陶冶人、启迪人、充实人,促使人的素质的全面发展。
6、数学教育是一种文化,使人得到数学方面的修养,更好的理解,领略现代社会的文明;它是一种方**,使人善于处世和做事,能提高在现代化建设中的工作效率;它是一种精神和态度,使人实事求是,锲而不舍,坚持不懈的追求;它是“思维的体操”,使人思维敏锐,表达清楚。
7、数学的重要特性------抽象性、严密性、系统性。
8、数学思维教育的意义在于培养人的数感、数学观念和数学思想。数学教育是为了扩展人们头脑中的数学空间。
9、数学相关能力------数学化、公理化、形式化。
10、努力使外界现象数学化,注意现象的数学方面,到处注意空间和数量关系以及函数依存关系。
11、数学,培养学习的意志,培养人的概括能力,培养人本质地看问题的意识,培养人的抽象意识,培养人的良好思维习惯,形成良好的思维策略,增强人的反应能力,改善人的思维器官。
12、数学教育目的:1、通过“数学常识”和“数学思维能力”的组合来培养数学智力;2、培养有数学素养的人。“有数学素养”:懂得数学价值,对自己的数学能力有信心,有解决数学课题的能力,学会数学交流,学会数学的思想方法。
通过练习题学习数学技能--------适合于学习事实和技能。通过解决的确具有某些特点的情况,学习解答问题的一般方法,而这些特点是用来定义一个实实在在的问题的----适合于学习如何发现和探究的技能,学习数学的再发现和学会如何学习。
13、数学学习的目的,从掌握“数学事实和技能”转变为掌握“解决问题的一般方法”即“数学式地思考”,是数学教育观念的重大更新。
14、理解数学的四个层面:1、形式层面的理解。逻辑思维训练,应当是数学学习中的基本训练。2、发现层面的理解;3、直观-具体层面的理解;4、直觉层面的理解。
15、小平邦彦:“一般认为数学是按严密的逻辑构成的科学,即使与逻辑不尽相同,却也大致一样。但是实际上,数学与逻辑没有什么关系。数学当然应该遵循逻辑,但逻辑在数学中的作用就像文法在文学中的作用那样,书写合乎文法的文章与照着文法去写小说完全是两码事;同样,进行正确的逻辑推理与堆砌逻辑去构成数学理论是性质完全不同的问题。数学在本质上与逻辑不同。
16、在数学中绝不要把逻辑的马车放到启发式的马前面。
17、我们只有了解结论是怎样得来的,才能真正弄懂结论。重现或亲历发现过程,是数学家学习、研究数学的高招。最好的学习方法是动手-----提问,解决问题。最好的教学方法是让学生提问,解决问题,不要只传授知识------要鼓励行动。
18、数学是抽象的,理解数学的一个层面便是,赋予数学直观和具体的意义。
19、过份强调数学的形式结构是个错误。
20、抽象只有在坚实的经验基础上才有意义,此外,引进抽象观念后,应该用具体问题来显示她们的用处。                                                                                  
21、现代数学好的方向是它强调几个基本的概念,诸如,对称、连续和线性。
22、几何直观仍然是领悟数学的最有效的渠道。几何直观就是对于抽象的东西,能够在头脑中像画画一样描绘出来并加以思考。
23、数学教学与人的素质发展相结合,是数学教育的最主要的宗旨。
24、几何图形是一种数学符合,是“直观空间的帮助记忆的符号”,是“图像化的公式”。
25、数学真正要办的事情是解决具体的问题。理解一个理论的最好的办法是找到一个具体问题,然后研究该理论的一个样本实例,一个能说明一切的典型例子。
26、针对一个数学理论,举出典型实例、反例、特例(即特殊情形)等,都市具体地理解这种数学理论的方法。
27、逻辑用于证明,直觉用于发明。
28、在理解数学的过程中,领悟推理链中所隐含的整体性、次序性、和谐性,达到对推理链的整体把握,乃至能够预见证明,这种领悟叫做直觉。
29、记忆在数学中是重要的,但不必去记住数学事实。
30、数学直觉意味着不严格;意味着可见;意味着缺乏证明时的似真性和可信性;意味着不完全;意味着依赖物理模型或某些主要例子;意味着与详细或分析相对立的笼统或综合。
31、理解重于证明。
32、数学思维教育要求学生通过自己的思维来学习。
33、目前教育的缺陷:有的采取注入式和题海战术,把学习数学仅仅看成是感知和再认,削弱或取消了它的中心环节---思维。有的吧数学思维活动仅仅看作形式逻辑思维,忽视了从整体看问题的辨证的、发展的思维活动。
34、如果问题给学生提供了合适的思维情境,就会极大地调动学生思维积极性。
35、在明白与不明白之间,还有广阔的、中间的、灰色

  评论这张
 
阅读(2004)| 评论(0)
推荐 转载

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2018